Giant Sequoias are the world's largest trees

Giant Sequoias are the world's largest trees in terms of total volume (technically, only 6 living Giant Sequoia exceed the 42,500 cubic feet (1,200 m3) of the Lost Monarch Coast Redwood tree; see Largest trees). They grow to an average height of 50-85 m (165-280 ft) and 6-8 m (18-24 ft) in diameter. Record trees have been measured to be 94.8 m (311 ft) in height and 17 m (57 ft) in diameter.


The oldest known Giant Sequoia based on ring count is 3,500 years old. Sequoia bark is fibrous, furrowed, and may be 90 cm (3 ft) thick at the base of the columnar trunk. It provides significant fire protection for the trees. The leaves are evergreen, awl-shaped, 3-6 mm long, and arranged spirally on the shoots. The seed cones are 4-7 cm long and mature in 18-20 months, though they typically remain green and closed for up to 20 years; each cone has 30-50 spirally arranged scales, with several seeds on each scale giving an average of 230 seeds per cone. The seed is dark brown, 4-5 mm long and 1 mm broad, with a 1 mm wide yellow-brown wing along each side. Some seed is shed when the cone scales shrink during hot weather in late summer, but most seeds are liberated when the cone dries out from fire heat and/or insect damage

Giant Sequoia regenerates by seed. Trees up to about 20 years old may produce stump sprouts subsequent to injury. Giant Sequoia of all ages may sprout from the bole when old branches are lost to fire or breakage, but (unlike Coast Redwood) mature trees do not sprout from cut stumps. Young trees start to bear cones at the age of 12 years.

At any given time, a large tree may be expected to have approximately 11,000 cones. The upper part of the crown of any mature Giant Sequoia invariably produces a greater abundance of cones than its lower portions. A mature Giant Sequoia has been estimated to disperse from 300,000-400,000 seeds per year. The winged seeds may be carried up to 180m (600 ft) from the parent tree.

Lower branches die fairly readily from shading, but trees less than 100 years old retain most of their dead branches. Trunks of mature trees in groves are generally free of branches to a height of 20-50 m, but solitary trees will retain low branches.

Distribution
The natural distribution of Giant Sequoia is restricted to a limited area of the western Sierra Nevada, California. It occurs in scattered groves, with a total of 68 groves (see list of sequoia groves for a full inventory), comprising a total area of only 14,416 ha (144.16 km² or 35,607 acres). Nowhere does it grow in pure stands, although in a few small areas stands do approach a pure condition. The northern two-thirds of its range, from the American River in Placer County southward to the Kings River, has only eight disjunct groves. The remaining southern groves are concentrated between the Kings River and the Deer Creek Grove in southern Tulare County. Groves range in size from 1,240 ha (3,100 acres) with 20,000 mature trees, to small groves with only six living trees. Many are protected in Sequoia and Kings Canyon National Parks and Giant Sequoia National Monument.

Giant Sequoia is usually found in a humid climate characterized by dry summers and snowy winters. Most Giant Sequoia groves are on granitic-based residual and alluvial soils. The elevation of the Giant Sequoia groves generally ranges from 1,400-2,000 m (4,600-6,600 ft) in the north, and 1,700-2,150 m (5,600-7,000 ft) to the south. Giant Sequoia generally occurs on the south facing side of northern mountains, and on the northern face of more southern slopes.

High levels of reproduction are not necessary to maintain the present population levels. Few groves, however, have sufficient young trees to maintain the present density of mature Giant Sequoias for the future. The majority of Giant Sequoias are currently undergoing a gradual decline in density since the European settlement days.

Ecology
The Giant Sequoias are having difficulty reproducing in their original habitat (and very rarely reproduce in cultivation) due to the seeds only being able to grow successfully in mineral soils in full sunlight, free from competing vegetation. Although the seeds can germinate in moist needle humus in the spring, these seedlings will die as the duff dries in the summer. They therefore require periodic wildfire to clear competing vegetation and soil humus before successful regeneration can occur. Without fire, shade-loving species will crowd out young sequoia seedlings, and sequoia seeds will not germinate. When fully grown, these trees typically require large amounts of water and are therefore often concentrated near streams.

Fires also bring hot air high into the canopy via convection, which in turn dries and opens the cones. The subsequent release of large quantities of seeds coincides with the optimal post-fire seedbed conditions. Loose ground ash may also act as a cover to protect the fallen seeds from ultraviolet radiation damage.

Due to fire suppression efforts and livestock grazing during the early and mid 20th century, low-intensity fires no longer occurred naturally in many groves, and still do not occur in some groves today. The suppression of fires also led to ground fuel build-up and the dense growth of fire-sensitive White Fir. This increased the risk of more intense fires that can use the firs as ladders to threaten mature Giant Sequoia crowns. Natural fires may also be important in keeping carpenter ants in check.

In 1970 the National Park Service began controlled burns of its groves to correct these problems. Current policies also allow natural fires to burn. One of these untamed burns severely damaged the second-largest tree in the world, the Washington tree, in September 2003, 45 days after the fire started. This damage made it unable to withstand the snowstorm of January 2005, leading to the collapse of over half the trunk.

In addition to fire, there are also two animal agents for Giant Sequoia seed release. The more significant of the two is a longhorn beetle (Phymatodes nitidus) that lays eggs on the cones, into which the larvae then bore holes. This cuts the vascular water supply to the cone scales, allowing the cones to dry and open for the seeds to fall. Cones damaged by the beetles during the summer will slowly open over the next several months. Some research indicates that many cones, particularly higher in the crowns, may need to be partially dried by beetle damage before fire can fully open them. The other agent is the Douglas Squirrel (Tamiasciurus douglasi) that gnaws on the fleshy green scales of younger cones. The squirrels are active year round, and some seeds are dislodged and dropped as the cone is eaten.(wikipedia.org)

Post a Comment

أحدث أقدم